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Weighted Values and the Core 

D. Monderer 1, D. Samet 2, and L.S. Shapley 3 

1 Introduction 

The main result of this paper is that the set of all weighted Shapley values of a 
cooperative game contains the core of the game. That there is such a general rela- 
tionship between core and values is somewhat surprising in light of the difference in 
concept behind these solutions. Indeed cooperative game theory tells us very little 
about the relations between core and values. Such relations are known to exist for 
convex games and for market games with a continuum of players. In such games the 
Shapley value is always in the core. Convex games have, in a sense, large cores, 
which 'explains' why they contain the Shapley value. In the case of market games 
with a continuum of players, it is the homogeneity of the games and the diagonal 
property of the Shapley value that guarantee this fact. 

More relations can be found when we consider core-like and value-like solu- 
tions. In a recent paper Owen (1990) shows that for spatial voting games the Cope- 
land winner outcome, which is a near core solution concept, is an analogue of the 
Shapley value. A result concerning a relation between the core and value-like solu- 
tions for general games was noted by Weber (1988) who showed that the set of all 
random order values of a game contains the core. Our result generalizes Weber's 
since weighted values constitute a subset (dimensionally, a very small one) of ran- 
dom order values. 

Weighted Shapley values (weighted values for short) were defined by Shapley 
(1953 a, b) alongside the standard Shapley value and were extensively discussed in 
the literature (e.g., Owen (1972), Kalai, and Samet (1987), and Hart and Mas-Colell 
(1989)). For these values weights are assigned to the players. The value is then deter- 
mined in one of two equivalent ways. In the random order approach the weights are 
used to determine a probability distribution over orders of the players and the value 
is the expected contributions of the players according to this probability distribu- 
tion. In the algebraic approach the value of a unanimity game is determined first, by 
allocating one unit among the players of the carrying coalition according to their 
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relative weights. The value for general games is extended then by linearity. Weighted 
values were axiomatized by Shapley (1981), using the weights explicitly in the 
axioms, and by Kalai and Samet (1987) without doing so. Hart and Mas-Colell 
(1989) used the potential approach in order to provide new axiomatizations for the 
weighted values. 

Our first results concern convex games. We characterize convex games by a 
property of the set of all weighted values of a game. We show that the weighted 
values of a given game are monotonic with respect to the weights if and only if the 
game is convex. By monotonicity of the weighted values for a given game we mean 
that when a player's weight is increased, while keeping the other players' weights 
unchanged, the player's value in the given game increases. The intuition behind this 
claim is as follows. When we examine the dependence on the weights of the proba- 
bility distribution over orders we find that by increasing a player's weight we in- 
crease his chances to arrive 'late'. Convex games are precisely those games in which 
a player's contribution increases when he arrives 'late'. Therefore by increasing a 
player's weight we increase his expected contribution. Using the monotonicity prop- 
erty we prove that a game is convex if and only if its core coincides with the set of all 
its weighted values. This last result is used together with a fixed-point argument to 
prove the main result of the paper. The core of any game is a subset of the set of all 
its weighted values. 

The difficulty in studying weighted values stems from the special structure of 
the family of weighted values as a set of linear operators from the space of games 
into R y where N is the set of players. The association of each positively weighted 
value, namely one in which each player has a positive weight, with the corresponding 
weight vector is a homeomorphism between the positively weighted values and the 
relative interior of the unit simplex in R N. But, unlike the latter, the set of positively 
weighted values is not a convex set. Moreover, this natural homeomorphism cannot 
be extended to one between the closure of the positively weighted values, which is 
the set of all weighted values, and the unit simplex. This is so because the limit of a 
sequence of positively weighted values depends on the rate of convergence to zero of 
different weights. 

Each game v can be viewed naturally as a linear transformation from the space 
of linear solutions to R y.  It maps the set of all weighted values to the set of all 
payoff vectors assigned to v by all the weighted values. The non-trivial structure of 
the payoff set is inherited from the non-trivial structure of the set of weighted values 
which is mapped on it linearly by v. Since the set of all weighted values is not convex 
we cannot expect it to be mapped onto a convex set by a linear mapping, and indeed 
in general it is not. 

The structure of the set of weighted values is best revealed when it is mapped to 
R N by a strictly convex game. In this case we show that the set of weighted values is 
mapped homeomorphically onto the core of the game. Moreover, the structure of 
the core, which was studied by Shapley (1971) is reflected in a natural way in the 
structure of the set of weighted values. 

The set of weighted values can be easily shown to be homeomorphic to the set 
of conditional systems that was discussed in the literature of non-cooperative game 
theory (e.g., see Myerson (1986) and Mclennan (1989a, b)). The main theorem of 
Mclennan (1989b) states that this set is homeomorphic to a ball. As the core of a 
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strictly convex game is homeomorphic  to a ball ,  this paper  provides an independent  
p roo f  to Mclennan 's  theorem. 

The lack of  convexity of  the set of  weighted values distinguishes it f rom the 
much simpler set of  r andom order values. Since the latter is a convex set of  values it 
follows that  the set of  all random order  values of  a game is also convex. The p roof  
that  this set contains the core requires s tandard techniques of  convex analysis. By 
contrast ,  the case of  weighted values seems to require heavier tools. The p roo f  of  
our main result relies on a f ixed-point  theorem. 

2 Preliminaries 

Let N be a finite set with n _> 1 elements which we call players. The set of  all non- 
empty subsets of  N will be denoted by JZf. For  Sc_N we denote N-kS by S c and for 
i e N w e  write S w i  for Sw {i} and Ski for S\{i} .  For  SEJd" we write x s, yS, etc., for 
elements in R s. If  S C  T then x~ is the project ion of  x T on R s. 

For  x, y ~ R  N we write x>-y if xi>_y~ for all ieN,  we write x > y  if  x>_y and x ~ y ,  
and we write x~>y if xi>yi for all i~N. 

For  x e R  N and S e / / {  we write x(S) for ~.i~sX~; for S = 0 ,  x(S)=0.  For  a finite 
set X,  A (X) is the unit simplex in R x. We denote by Int(A (X)) the relative interior 
of  A (X). 

We denote by ~ the set of  all n! (complete) orders on N. For  i, j e N  and for 
r ~  we shall write i<rj, if i comes before j in the order r. The set of  all players 
preceding player  i in r is denoted by Q~. A game on N is a function v:2~VoR with 
v(0) = 0. The space of  all games on N will be denoted by  G. A game v is convex if for 
every T C S  and for every ir v ( T u i ) - v ( T ) < _ v ( S u i ) - v ( S ) ,  v is strictly convex if 
the last inequalities are always strict. For  every S ~ J Z / t h e  unanimity game Us is de- 
fined as follows: us(T) = 1 if  S c  T, and us(T) = 0 otherwise. The core C(v) of v is 
the set of  all x e R  :v for which x ( N ) = v ( N )  and x(S)>_v(S) for all S E N .  

The contribution vector z~(r)eR ~v for the game v and the order r is defined by 
v i ' i Z (r) i=v(QruO-v(Q~) for each ieN.  Let P be a probabi l i ty  measure over all n! 

orders of  N.  i.e.,  P e A ( ~ ) .  The P-random order value q/(P): G o R  N is defined by 
q f (P )  =Ep(z"( . ) )  for each v~G, where Ep is the expectation with respect to P .  That  
is, 

q/~(P) = ~ (v(Q~ui)-v(Q~r))P(r) for all v~G and for all i eN .  (2.1) 

The structure of  the core of  a convex game is described in Shapley (1971) (see also 
Ichiishi (1983)) as follows. 

Let ~. be the set of  all ordered part i t ions o f  N. Elements of  ~. are of  the form 
a = ( S l ,  . . . ,  Sk), where k_>l ,  u kh=l Sh=N, and for all i r  SinSj=O and 
s,r 

For  each cr=(St  . . . . .  Sk) in ~, let • be the set of  all xeC(v)  such that  
x(uy=L S j ) = v ( U y = l  Sj) for all l < h < k .  When v is convex, F ~  is a nonempty  face 
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of  C(v) of  dimension n - k  at most. In particular for a with k=n, F~ consists of  
one point. This point is a contribution vector, and C(v) is the convex hull of  all 
contribution vectors. When v is strictly convex then F~ is of  dimension n -  k and 
all faces F~ are distinct. Finally, the core of  v contains all the contribution vectors if 
v is convex; if in addition all the contribution vectors are distinct then the game is 
strictly convex. 

3 Positively Weighted Values 

For a vector o9 eR  N + (i.e., 09 ~> 0), the positively weighted value ~o (o9): G---~R N is de- 
fined in Shapley (1953 a) as the unique linear operator satisfying for each unanimity 
game Us: 

Io9/o)(S), for ieS (3.1) 
(~ = (0, for i~S. 

Since ~o<')(o9) is linear, (3.1) defines ~v(w) for all reG. 
If  o9,-= ~ for all i~N then ~0(o9) is the Shapley value. 
Owen (1972) has shown that the positively weighted Shapley values are random 

order values. For a weight vector co we define P,o in A ( ~ ' )  as follows. Let Xi for 
i~N be independent random variables distributed over [0, 1] such that for every 
0_<t_<l and i6N, 

Prob(Xi < t)= g ~ 

For r ~ 3  define: 

Po~(r)=P(Xi<X/ for all i<rj, i, j e N ) .  (3.2) 

Then for every veG, q7~(o9)= q/v(p~). Note that both ~0v(.) and P<.> are positively 
homogeneous o f  degree one. Therefore we can restrict our attention to vectors 09 in 
Int(A (N)), that will be called weight vectors. 

4 Weighted Values 

We generalize now the notion of  a weight vector to enable some players to have zero 
weight. The values corresponding to the generalized weights will be called weighted 
values. These values were defined by Shapley (1953 b) and axiomatized by Kalai and 
Samet (1987). The following consideration will lead us to this generalization. 
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When zero-weight players are allowed we can not use directly (3.1) to define a 
value, since for S which contains only zero-weight players (3. I) is not defined. We 
need therefore to assign secondary weights to the zero-weight players, that will be 
used for coalitions which contain only zero-weight players. These new secondary 
weights may themselves assign zeros for some of the players and we have to assign 
also weights to these doubly zero-weighted players, and so on. We are naturally lead 
to the following definition. 

A general ized weight  vector  is a 2k-tuple, 1_ k<_n, (St . . . . .  Se, w sl ,  . . . .  w sk) 
such that (S1 . . . . .  S k ) ~  and w S ~ I n t ( A ( S h ) )  for h = 1 . . . . .  k. The interpretation of 
the generalized weight vectors is as follows. The players in Sk are the non-zero 
weight players with weights given by wS% while the rest of the players are zero- 
weight players. Among the zero-weight players the 'heaviest' are the members of 
Sk-~ with weights w sk-~. All players in w h_< k--2Sh are zero-weight players relative to 
players in Sk_ ~, etc. Note that every weight vector o9 can be naturally identified with 
the generalized weight vector (N, o9). 

Given the generalized weight vector (Sa . . . . .  Sk, w s~, . . . .  w s~) we can find the 
relative weights of player in each coalition S. For a given S let 
m = m a x { h  [ S h n S ~ O } .  Define now w s by: w/s= wSi~/wSm(Sf'~Sm) for iES~Sm and 
wS=0 for iES\Sm. Thus Sc~Sm consists of all the 'heaviest' players in S. The rela- 
tive weights of these players are determined by their weights in Sm. The rest of the 
players have zero weight in S. 

Denote now w = ( w S ) s ~ ,  w is a vector in H s ~ A ( S )  and it is easy to verify 
that it satisfies: 

w s = w ~ / w r ( S )  (4.1) 

for each i~Sc_ Tsuch that wT(S)>0.  
A vector w ~ l - [ s ~ A  (S) which satifies (4.1) is called a weight  sys tem.  The set of 

all weight systems is denoted by ~ .  We saw that each generalized weight vector 
corresponds to a weight system. It is easy to see that this correspondence is one to 
one. We show now that it is also onto ~ .  

Let w e T f  and define a ( w ) ~ ,  as follows. Let TI= { i ~ N : w ~ > O } ,  and for 
h _  2 we define Th to be the set 

I i~ (u~--11- Tj)c: wlU}= 1Ty>  0 1 

when this set is not empty. 
Let Tk be the last nonempty set so defined, then clearly (7"1 . . . . .  Tk) is an or- 

dered partition. Now for each 1 _ h _< k, let Sh = T k -  h + 1 and a (w) = ($1 . . . . .  Sk). It is 
easy to see now that w is the weight system that corresponds to the generalized 
weight vector (SI . . . . .  Sk, w s', . . . .  wSk). 

For a given a e ~ .  we denote by ~ the set of all weight systems w for which 
a ( w ) = a .  Note that for W ~ W ~ . ~ ( N  ) iff wN~o, and that ~(N) is dense in ~ .  
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For  a given w e  7 f  we define now the weighted value ~o(w) as the linear function 
r G--*R u which is defined for each unanimity  game Us by: 

~07~(w)= w s for i eS  and O7~(w)=0 otherwise. 

Note that  for w e ~ u )  the weighted value 0 (w) coincides with the positively weighted 

value 0 (wlV). 
Weighted values are also random order values. The probabi l i ty  distr ibution Pw 

in A ( ~ )  which defines ~0(w) is described as follows. 
We say that  an order  r of  N is consistent with a = ($1, $2 . . . . .  Sk) in ~. if for 

each 1 <_h<_k- 1 each player in Sh precedes each player  in Sh+~. For  each w ~  we 
define a probabi l i ty  measure Pw over all orders of  N, the support  of  which is the set 
of  all orders which are consistent with a(w). 

Now let ($1 . . . . .  Sk, w s~ . . . . .  w s~) be the generalized weight vector which corre- 
sponds to w. Since wS~Int(A(Sh)) for all 1 <_h<_k, we can define for each such h a 
probabi l i ty  distr ibution Pw~* on the orders of  Sh in the same way P ~  was defined in 
(3.2). We define now 

k 

p ~  (r) = ]-I Pws.(rh),  
h = l  

where rh is the order on Sh induced by r. Pw is the probabi l i ty  distr ibution for which 
~0V(w) = ~v(Pw) for each game v. 

Notice that  in all the orders which are consistent with a(w) ,  the non-zero 
players (those in SD are preceded by all other players, all the players in Sk_ 1 are 
preceded by the players in Wh~_k-zSh etc. 

5 The Main Results 

The main theorem is the following: 

Theorem A. For every game v, each element in the core o f  v is the weighted value o f  
v for  some weight system. That is, C(v)C_~ov(Tf). 

The anti-core AC(v) of the game v is defined to be the set of  all x ~ R  N for which 
x(N)  = v(N), and x(S)<_v(S) for  all SC_N. The anti-core is a natural  solution con- 
cept for games that  model  cost al location problems.  Note that  AC(v) = - C ( - v )  for 
all v~G. Therefore,  Theorem A and the l inearity proper ty  of  the weighted values 
imply: 

Theorem B. For every game v, each element in the anti-core o f  v is the weighted 
value o f  v for  some weight system. That is, AC(v) C_q~(Tf ). 

More specific results are obtained for convex games. 
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Theorem C. A game v is convex i f f  C(v) = O v ( ~ ) .  Moreover,  v is strictly convex i f f  
~o v is a homeomorphism between 7 f  and C(v); In this case f o r  each a e ~ , ,  ~ maps 

homeomorphically  ~ onto the relative interior o f  the face  F~ o f  C(v). 
A corollary of  Theorem C is: 

Corollary C. The set 7 f  o f  all weight systems on N is homeomorphic  to a n - 1 
dimensional ball, where n is the cardinality o f  N.  

Weber (1988) proved that for every game v 

c (v) __ ~,~ (A ( ~ ) ) ,  (5.1) 

where ~ / ~ ( A ( ~ ) ) =  { q f ( P ) : P e A ( ~ ) }  is the set of  all random order values of  v. 
Since weighted values are random order values Cv(Y/f)c qf (A ( ~ ' ) )  and therefore 
Theorem A implies Weber 's  result. Moreover, the set of  all weighted values has the 
dimension of  7 f  which according to Corollary C is n - 1 .  The set of  all random 
order values can be shown to have the dimension 2 " - 1 ( n - 2 ) +  1. Thus Theorem A 
shows that a much "thiner" set of  values is required in order to cover the core of  
each game. Note also that ~0v(Yf) is not a convex set in general and therefore it is 
strictly contained in the set ~u v (A (~,~)). 

The set 7 f  has been discussed in the literature of  non-cooperative game theory 
under the title ' the space of  conditional systems' (e.g., see Myerson (1986) and 
Mclennan (1989a, b)). Condition (4.1) can be phrased as saying that for each S, w s 
is the conditional probability on S derived from the probability distributions on su- 
persets of  S whenever such derivation is possible. The result of  Mclennan (1989b) 
states that ~ is homeomorphic to a ball and it is proved using algebraic topology 
techniques. Corollary C is an independent proof  of  this result. It shows that 7 f  is 
homeomorphic to the core of  any strictly convex game. Convex games can be also 
characterized by another property of  the weighted values. 

For every i e N  and for every w e  u in ~ we write w > i  u if wS> u s for every 
S which contains i and w s= u s for all Sc_N\ i .  

We say that ~0 ~ is increasing if for each i, for each ordered partition a, and for 
each w, u e ~ such that w > i u, 

~o~ (w) _> (o7 (u). (5.2) 

q~v is strictly increasing if the inequalities in (5.2) are strict. 

Theorem D.  The game v is (strictly) convex i f f  ~o v is (strictly) increasing. 
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We will need the following lemma: 

L e m m a  1. Let  v be a convex game and let w > i  u, where w, U~7~N). Then 

~o~(w)<_~o~(u) f o r  all j # i .  (6.1) 

Moreover, i f  v is strictly convex then the inequalities in (6.1) are strict. 

Proof." It can be easily verified that  it suffices to prove that  for a convex game v, 

- - _ > 0  for all c o e R N + ,  (6.2) 
0r 

and that  for a strictly convex game v the inequalities in (6.2) are strict. 
Indeed, let f v be the multi l inear extension of  v as defined by Owen (1972). 

Then 

~(~o) = i 
Of ~ 

o ~ (t~ t~~ . . . .  t~176 t ~ dr. 

Therefore,  

0~o~(o)) } 02 f ~ 
Ocoi - o ~ (t~ t~ . . . .  t~176 ~+~'-~ ln(t)dt. (6.3) 

It is well-known that  v is convex iff  for all i C j  

OV v 
- - ( x )  - 0 for all x~[O, 1] N, 
OxjOxi 

and that  v is strictly convex iff  for  all i C j  

- - ( x ) > O  for all xe[O, 1] N. 
axjOxi 

Hence the result follows from (6.3). �9 

P r o o f  o f  Theorem D: Lemma 1 and the efficiency proper ty  of  ~o (i.e., 
~oV(w)(N)=v(N)) imply that  for a convex game v, ~oy(w)>>_q~7(u) whenever w, 
u e ~ u )  and w > i u ,  and that  for a strictly convex game v the last inequalities are 
strict. 
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Let then a =  (S1, 8 2 . . . . .  Sk) be an ordered partition different f rom (N), w, 
ueT/f~ with w>~ u, and let v be a convex game. Suppose ieSh. Observe that Sh con- 
tains at least two players because w>~ u. Define a game vh on the grand coalition Sh 
by 

t)h(T)=v(Tt,.Jk<hSic)--V(k.)k<hSk) for all Tc_Sh. (6.4) 

It can be easily verified that for each r~  

(o~(r)s~ = 9 ~ (rs) ,  (6.5) 

v T v T where 9 ( )s,,=(ge( ) )~s ,  and rs~:(rS)s~_s,. 
Note that vh is (strictly) convex whenever v is (strictly) convex, and since 

w s~ ~>0 and uS~>O the result follows from what we showed for weight systems in 

~((N). 
We have shown that (strict) convexity of  v implies (strict) monotonicity of  9L 

Conversely, assume ~ is increasing and that v is not convex. Then there exist i ~ j  
and S c  {i , j}  ~ such that 

v (Su  [ ) -  v(S) > v ( S u j u  O -  v(S~3j]. (6.6) 

Consider w such that a(w)=(S,  {i, j},  (Suiu j )~) .  Then by (6.5) and the formula 
for computing the positively weighted value for 2-person games, 

97(w) = w} i'jl [ v ( S w j • O - v ( S w j ) ]  + wJ i'j} [ v ( S u O - v ( S ) ] .  (6.7) 

Consider u defined by u r =  w r for each T r  { i , j} ,  u} ~'j} =w~ ~'j} - ~  and uJi'J}= 
wy  "j} + e for small enough e > 0. Clearly w > s u  and a (u)= a(w). Thus we can write 
for u an expression similar to (6.7). From (6.6) and (6.7) 

9 7 (w) < ~ 7 (u). (6.8) 

This contradicts the monotonicity of  9 v. 
If  o is assumed not to be a strictly convex game then we can guarantee only 

weak inequality in (6.6) and therefore weak inequality in (6.8). This is, however, 
sufficient to contradict strict monotonicity of  ~v. This complete the proof  of  The- 
orem D. �9 

We prove Theorem C through Lemmas 2-4. 

Lemma 2. Let v be a convex game. Then for  each ae~. ,  Oo(Tf,)c_F~. Moreover, 
i f  v is strictly convex then 9v(Tf~)c_Int(F~) - the relative interior o f  F~. 

Proof." Let a =  ($I . . . . .  Sk) and let we  ~ .  Observe that for every game v, 

9~ = ~ zV(r)Pw(r), (6.9) 
r ~  

where 3 .  is the set of  all orders which are consistent with a. 
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Suppose v is a convex game and let r e ~ then by Shapley (1971), z ~ (r) (S) -> v (S) 
for all S t / / {  and z~(S) = v(S) for every S which is an initial segment with respect to 
r (i.e., S=Q~ for some i e N ) .  In part icular ,  for r e ~ o ,  

z"(r)(S~)=v(S ~) for all l <_j<_k, 

where S j =  ~h_~S~ for every 1 <_j<_k. Hence (p"(co)~F~ by (6.9). 
By Shapley (1971), for a strictly convex game v, z ~ (r) (S) > v (S) for every coali- 

t ion S which is not  an initial segment with respect to r. As P~(r)> 0 for all re~.~o, 
(6.9) implies that  r  for all Sr 1, S 2 . . . . .  S~}. Therefore 
~oV(w)sInt(F~). �9 

L e m m a  3. Let  v be a strictly convex game. Then q~ is one-to-one. 

Proof." Since relative interiors of  different faces of  C(v) are disjoint  it suffices by 
Lemma 2 to prove that  q~ is 1-1 on each 7~U~. Let then a =  (Sa . . . . .  Sk) and let 
w r  Then for some l<_h<_k, wS~-Cu s". In order to show that  0~(w)r  ~0"(u) 
it suffices by (6.5) to show that  (P~"(Ws~)4: (P~"(Us~), where vh is defined in (6.4). 
Since vh is strictly convex, wS"~>O, and uS~>O, it suffices to prove that  weighted 
values of  strictly convex games are one-to-one on ~'ZN). 

N We now show that if a, h e R + + ,  a<b,  and for some j ,  aj=bj, then ~0y(a)> q~(b). 
Suppose firstly that  for some i r  a~< b~ and ak = be for each k r i. Then by Lemma 
1, in this case, ~0~(a)>~0y(b). In the general case, one can find a sequence a ~, 
a 2 . . . . .  a ~ such that  a l = a ,  d = b  and a k+l is obtained from a k by increasing one 

coordinate  only. 
Now for w :~ u in ~((N) define 2o = min { 2 > 0: 2 w N >_ u u} and let b = 2o WN~ Then 

b > u u and there exists j such that  bj = u u.  Therefore,  

~0~ = ~0~(b) e e"(u ~) = o"(u).  

L e m m a  4. Let  v be a strictly convex game. Then ~o~(7f ) = C(v). 

Proof." In what follows we denote the relative interior Of a convex set X by In t (X) .  
Recall that  C(v) =F(%). Therefore,  by Lemma 2, r maps ~ u )  into the relative inter- 
ior of  C(v). Since the closure of  g/~(u) is ~ and r is continuous,  it suffices to prove 
that  O~ To see this note that ~ u )  is homeomorphic  to I n t A ( N )  
and therefore,  both  ~ u )  and Int(C(v)) are homeomorphic  to R n-  1. Since ~0 v is con- 
t inuous and 1- I ,  we deduce from the Invariance of  Domain  Theorem (e.g., see Is- 
tratescu (1981)) that  ~0V(~N)) is open in Int(C(v)).  Let B=Int(C(v)) \ (oV(~N)) .  We 
now show that  B is open in Int(C(v))  and therefore must be empty since Int(C(v)) is 
connected. Indeed, if B is not open then there exists z E B  and a sequence (zm), m >-- 1 
in ~0v(g/~(N)) such that  z m ~ z .  For  each m there exists w m in g/~(u) such that  
(0V(wm)=z " .  Since 7/f is compact  we may assume without  loss of  generality that  
wm---~We~/~. Since cp ~ is continuous ~0"(w)=z and hence W~Y//((N) and w s ~  for  
some a r  But then, by Lemma 2, z e I n t ( F ~ )  which is a contradict ion since 
[nt (F ~ ) n ln t  ( F ~ )  = O. �9 
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Proof  o f  Theorem C: By Lemmas 3 and 4, for a strictly convex v, <pv is a 1-1 con- 
tinuous map from ~ onto C(v) and since ~ is compact it is a homeomorphism. 
By Lemmas 2, 3, and 4, 07: 7 Y ~ F ~  is a 1-1 continuous map onto Int(F~) and 
therefore it is a homeomorphism. 

Now let v be a convex game. There exists a sequence (v")m= ~ of strictly con- 
vex games on N such that vm(S)~v(S)  for each SC_N. For each m, ~0vm(7/f)= 
CO {Z~(r)}, were Co stands for "convex hull" and r ranges over all orders of  N. 
Since z v~(r)~z ~(r) and ~0 v(w) is continuous in both w and v, 
~o~(7/f ) = Co {z~(r)} = C(v). 

Conversely, suppose ~0"(Tf)=C(v).  For each order r of  N let ar= 
({i~}, {/2} . . . . .  {in}), where i~, iz . . . . .  i~ is the order of  the players according to r. 
7/f~ consists of  a single weight system Wr and ~o"(Wr)=Z~ Thus z ' (r )eC(v)  for 
each order r and therefore v is convex. Moreover, if ~0" is a homeomorphism then 
all n? vectors z ~ (r) are distinct and therefore v is strictly convex. �9 

Proof  o f  Theorem A:  Let v be a game with a nonempty core and let xeC(v) .  We 
have to show that there exists we  ~ for which ~0V(w)=x. 

Let u be a fixed strictly convex game such that v + u is also a strictly convex 
game. By Theorem C, q?+~ has a continuous inverse function that we denote by g. 
That is, g:  C(v+ u ) ~ f .  

For each we Tf,  (oU(w)eC(u) and since xeC(v) ,  (x + ~oU(w))eC(v+ u). 
Define f :  ~ ~ "  by 

f (w)=g(x+~U(w))  for all w e ~ .  

Since f i s  continuous, it follows from Corollary C that it has a fixed point in 7 f ,  say 
Wo. Hence, ~v+U(wo)=x+q~"(Wo), and from the linearity property of  ~0(')(Wo), 
~V(Wo) =x .  �9 

7 Dual Weighted Values 

Weight systems can be used to define a different family of  values which we call dual 
weighted values. For w e Y f t h e  dual weighted value ~p*(w) is defined by (O*)V(w)= 
~pV*(w) where v* is the dual game of  v which satisfies for each S: 
v* (S) = v (N) - v (N\S) .  

Dual positively weighted values were used by Shapley (1981) for cost allocation 
problems, where he also provided an axiomatization of  ~p* (w) for a fixed positive w. 
An axiomatization of  the whole family of  the dual weighted values was given by 
Kalai and Samet (1987). Like weighted values, Dual weighted values are also ran- 
dom order values. The probability distribution P*w which determines <p* (w) assigns 
to each order r the probability Pw (r*) where Pw is the probability distribution (de- 
scribed in Section 3) which defines ~0(w) and r* is the order r reversed. 

The families of  the weighted values and of  the dual weighted values intersect. 
Thus for example, the random order values that are defined by probability distribu- 
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tions on ~,~ that  are concentrated on a single order in ~ belong to both families. 
However,  Kalai and Samet (1987) proved that for n _ 3 ,  the Shapley value is the 
unique element in the intersection of  the positively weighted values and the dual  
positively weighted values. 

Note that  for every game v, C(v)=AC(v*) .  Therefore we get the analogues of  
theorems A and B as follows: 

Theorem A*.  For every game v, each element in the core o f  v is the dual weighted 
value o f  v f o r  some weight system. That is, C(v)___(09*)~(Yf). 

Theorem B*. For every game v, each element in the anti-core o f  v is the dual 
weighted value o f  v f o r  some weight system. That is, A C (v) a_ (~o*) ~ (7//) .  

Observe further that  a game v is (strictly) convex iff  - v *  is (strictly) convex, 
and that  for each game v, ~ p - V ( ~ ) =  _ < / ( ~ ) .  Hence, Theorem C implies the next 
Theorem: 

Theorem C*. A game v is convex i f f  C(v) = (~o*)v(Yf). Moreover, v is strictly convex 
i f f  ((o*) ~ is a homeomorphisim between 7 f  and C(v). In this case f o r  each ae~ . ,  
(~o*) v maps homeomorphically 7//~ onto the relative interior o f  the face F~.  o f  
C(v), where ~* is ordered partition ~ reversed. 

We say that  (~p*)~ is decreasing if  for each i, for each ordered par t i t ion cr, and 
for each w, u e  7f~ such that  w>,-u,  

(~0") [ (w) _< (~p*) y (u). (7.1) 

(~0") ~ is strictly decreasing i f  the inequalities in (7.1) are strict. Thus we have: 

Theorem D*. The game v is (strictly) convex i f f  (qg*) v is (strictly) decreasing. 
Theorems C and C* imply that  for convex games v, 

~ov(yf)  = ( ~ o , ) v ( ~ ) .  

We conjecture that  the above equality holds for every game v. 
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